Relative Virtual Localization and Vanishing of Tautological Classes on Moduli Spaces of Curves

نویسنده

  • TOM GRABER
چکیده

We prove a localization formula for the moduli space of stable relative maps. As an application, we prove that all codimension i tautological classes on the moduli space of stable pointed curves vanish away from strata corresponding to curves with at least i− g + 1 genus 0 components. As consequences, we prove and generalize various conjectures and theorems about various moduli spaces of curves (due to Diaz, Faber, Getzler, Ionel, Looijenga, Pandharipande, and others). This theorem appears to be the geometric content behind these results; the rest is straightforward graph combinatorics. The theorem also suggests the importance of the stratification of the moduli space by number of rational components.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tautological Classes on Moduli Spaces of Curves with Linear Series and a Push-forward Formula

We define tautological Chow classes on the moduli space G d of triples consisting of a curve C, a line bundle L on C of degree d, and a linear system V on L of dimension r. In the case where the forgetful morphism to Mg has relative dimension zero, we describe the images of these classes in A(Mg). As an application, we compute the (virtual) slopes of several different classes of divisors on Mg.

متن کامل

Segre Classes and Hilbert Schemes of Points

We prove a closed formula for the integrals of the top Segre classes of tautological bundles over the Hilbert schemes of points of a K3 surface X. We derive relations among the Segre classes via equivariant localization of the virtual fundamental classes of Quot schemes on X. The resulting recursions are then solved explicitly. The formula proves the K-trivial case of a conjecture of M. Lehn fr...

متن کامل

Evaluating tautological classes using only Hurwitz numbers

Hurwitz numbers count ramified covers of a Riemann surface with prescribed monodromy. As such, they are purely combinatorial objects. Tautological classes, on the other hand, are distinguished classes in the intersection ring of the moduli spaces of Riemann surfaces of a given genus, and are thus “geometric.” Localization computations in Gromov-Witten theory provide non-obvious relations betwee...

متن کامل

Intersections of Tautological Classes on Blowups of Moduli Spaces of Genus-One Curves

We give two recursions for computing top intersections of tautological classes on blowups of moduli spaces of genus-one curves. One of these recursions is analogous to the well-known string equation. As shown in previous papers, these numbers are useful for computing genusone enumerative invariants of projective spaces and Gromov-Witten invariants of complete intersections.

متن کامل

A Remark on the Virtual Homotopical Dimension of Some Moduli Spaces of Stable Riemann Surfaces

Inspired by his vanishing results of tautological classes and by Harer’s computation of the virtual cohomological dimension of the mapping class group, Looijenga conjectured that the moduli space of smooth Riemann surfaces admits a stratification by affine subsets with a certain number of layers. Similarly, Roth and Vakil extended the conjecture to the moduli spaces of Riemann surfaces of compa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003